现在的位置: 首页英文图书, 软件>正文
Responsible Data Science: Transparency and Fairness in Algorithms
图书分类:英文图书, 软件 暂无评论 ⁄ 被围观 159 次阅读+

Description:

Explore the most serious prevalent ethical issues in data science with this insightful new resource

The increasing popularity of data science has resulted in numerous well-publicized cases of bias, injustice, and discrimination. The widespread deployment of “Black box” algorithms that are difficult or impossible to understand and explain, even for their developers, is a primary source of these unanticipated harms, making modern techniques and methods for manipulating large data sets seem sinister, even dangerous. When put in the hands of authoritarian governments, these algorithms have enabled suppression of political dissent and persecution of minorities. To prevent these harms, data scientists everywhere must come to understand how the algorithms that they build and deploy may harm certain groups or be unfair.

Responsible Data Science delivers a comprehensive, practical treatment of how to implement data science solutions in an even-handed and ethical manner that minimizes the risk of undue harm to vulnerable members of society. Both data science practitioners and managers of analytics teams will learn how to:

  • Improve model transparency, even for black box models
  • Diagnose bias and unfairness within models using multiple metrics
  • Audit projects to ensure fairness and minimize the possibility of unintended harm

Perfect for data science practitioners, Responsible Data Science will also earn a spot on the bookshelves of technically inclined managers, software developers, and statisticians.

 

Author: Grant Fleming, Peter C. Bruce
Length: 304 pages
Edition: 1
Language: English
Publisher: Wiley
Publication Date: 2021-05-11
ISBN-10: 1119741750
ISBN-13: 9781119741756

标签:,

你可能喜欢

0 0 投票数
文章评分
订阅评论
提醒
0 评论
内联反馈
查看所有评论